International Research journal of Management Science and Technology

  ISSN 2250 - 1959 (online) ISSN 2348 - 9367 (Print) New DOI : 10.32804/IRJMST

Impact Factor* - 6.2311


**Need Help in Content editing, Data Analysis.

Research Gateway

Adv For Editing Content

   No of Download : 1005    Submit Your Rating     Cite This   Download        Certificate

THE PÖSCHL TELLER MODEL FOR THE TOTAL CROSS SECTION OF NEUTRON SCATTERING FROM .

    4 Author(s):  J JOSEPH JEREMIAHA , B M JYRWAB , MATTHEW CHERIANA , JEBIN JACOBA

Vol -  6, Issue- 7 ,         Page(s) : 114 - 122  (2015 ) DOI : https://doi.org/10.32804/IRJMST

Abstract

Neutron scattering cross-section of have been investigated using an attractive potential. On applying the modified Pöschl-Teller model, the total cross-section of the in the energy range of 5-20 MeV have been calculated. It was compared with the available experimental data and evaluated data of JENDL-4.0, ENDF/B-VII.0 and CENDL-3.1 as well as with the theoretical values from TALYS-1.2 Nuclear Reaction Program, EMPIRE: 2.19 Nuclear Reaction Model Code and are found to be in reasonably good agreement. This supports the validity of the present calculation.

  1. I. F. Carminati, R. Klapisch, J.P. Revol, Ch. Roche, J.A. Rubio, C. Rubbia, An Energy Amplifier for Cleaner and Inexhaustible Nuclear Energy Production Driven by Particle Beam Accelerator, CERN Report No. CERN/AT/93-47 (ET) (1993). 
  2. C. Rubbia, J.A. Rubio, S. Buono, F. Carminati, N. Fietier, J. Galvez, C. Geles, Y. Kadi, R. Klapisch, P. Mandrilion, J.P. Revol, Ch. Roche,Conceptual Design Of a Fast Neutron Operated High Power Energy Amplifier, CERN Report No. CERN/AT/95-44 (ET) (1995). 
  3. E.D. Arthur, S.A. Schriber, A. Rodriguez (Editors), The International Conference on Accelerator-Driven Transmutation Technologies and Applications, Las Vegas, Nevada, USA, 1994, AIP Conf. Proc., Vol. 346 (1995). 
  4. Accelerator Driven Systems: Energy Generation and Transmutation of Nuclear Waste, Status report: IAEA-TECDOC-985 (Nov. 1997). 
  5. C.D. Bowman, Annu. Rev. Nucl. Part. Sci. 48 505 (1998). 
  6. S. Ganesan, Pramana J. Phys. 68 257 (2007).
  7. R.K. Sinha, A. Kakodkar, Nucl. Eng. Des. 236 683 (2006). 
  8. S. Ganesan, Creation of Indian Experimental Benchmarks for Thorium Fuel Cycle, IAEA Coordinated Research Project on Evaluated Data for Thorium-Uranium fuel Cycle, Third Research Co-ordination Meeting, 30 January to 2 February 2006, Vienna, Austria, INDC (NDS) – 0494 (2006). 
  9. L. Mathieu et al., Proportion for a very simple Thorium Molten Salt reactor, in Proceedings of the Global International Conference, Tsukuba, Japan, Paper No. 428 (2005). 
  10. Fast Reactors and Accelerator Driven Systems Knowledge Base, IAEA-TECDOC-1319: Thorium fuel utilization: Options and Trends (Nov. 2002).
  11. A. Nuttin, D. Heuer, A. Billebaud, R. Brissot, C. Le Brun, E. Liatard, J.M.Loiseaux, L. Mathieu, O. Meplan, E. Merle-Lucotte, H. Nifenecker, F. Perdu, S. David, Proc. Nucl. Energy 46 77 (2005). 
  12. T.R. Allen, D.C. Crawford, Sci. Technol. Nucl. Install., Article ID 97486 (2007).
  13. D.F. Jackson, Nuclear Reactions, John Wiley & Sons (1969). 
  14. Fröbrich and Lipperheide, Theory of Nuclear Reactions (1996). 
  15. H. Feshbach, C.E. Porter and V.F. Weisskopf, Phys. Rev. 96 448 (1954): M. Walt and J. Bavrchell, Phys. Rev. 93, 1062 (1954); C.B. Fulmer Phys. Rev. 125, 631 (1962). 
  16. P.E.  Hodgson, The Optical Model of Elastic Scattering.  Oxford, Clarendon Press (1963).   
  17. P.E.  Hodgson, Introductory Nuclear Physics, Oxford University Press (1997).
  18. A.J.  Koning and J.P. Delaroche.  Local and global nucleon optical models from 1keV to 200 MeV Nucl. Phys. A 713 (2003) 231-310. 
  19. Flugge, Practical quantum mechanics, Springer (1990). 
  20. Eric W, Theoretical Physics on the Personal Computer (1990). 
  21. I. Schiff, Quantum Mechanics, Mc. Graw-Hill (1968). 
  22. Bersillon.  O, The Computer Code SCAT-2, Proc. Workshop in applied Nuclear Theory and Nuclear Model Calculation for Nuclear Technology Application, page 319, World Scientific (1990).
  23. W.P. Abfalterer, F.B. Bateman, F.S. Dietrich, R.W. Finlay, R.C.  Haight, G.L. Morgan, Phys. Rev. C 63 (2001) 044608. 
  24. C.I. Hudson, W.S. Walker, S. Berko, Phys. Rev.128, p.1271 (1962). 
  25. A.J.  Koning, S. Hilaire and M.C. Duijvestijn,  TALYS-1.0,  Proceedings  of the  International  Conference  on  Nuclear  Data  for  Science  and  Technology, April  22-27,  2007,  Nice,  France,  editors O.  Bersillon, F.Gunsing,  E.Bauge, R. Jacqmin, and S. Leary, DEP Sciences (2008), p. 211-214. 
  26. Herman, M. Et al., EMPIRE: Nuclear Reaction Model Code System for Data Evaluation. Nucl. Data Sheets 108, 2655-2715 (2007). 
  27. M.  B.  Chadwick  et  al.,  ENDF/B-VII.0,  Next  Generation  Evaluated  Nuclear Data  Library  for  Nuclear  Science  and  Technology,  Special  Issue  on Evaluated  Nuclear  Data  File  ENDF/B-VII.0  Nuclear  Data  Sheets,  107(12), 2931-3059 (December 2006). 
  28. Z.G. Ge, Y.X. Zhuang, T.J. Liu, J.S. Zhang, H.C. Wu, Z.X. Zhao, H.H. Xia, The Updated Version of Chinese Evaluated Nuclear Data Library (CENDL-3.1), Proc.  International Conference on Nuclear Data for Science and Technology, Jeju Island, Korea, April 26-30, 2010 (in press). 
  29. K. Shibata, O. Iwamoto, T. Nakagawa, N. Iwamoto, A. Ichihara, S. Kunieda, S. Chiba, K. Furutaka, N. Otuka, T. Ohsawa, T. Murata, H. Matsunobu, A. Zukeran,  S.  Kamada, and J.  Katakura:  JENDL-4.0:  A New Library for Nuclear Science and Engineering, J. Nucl. Sci. Technol. 48(1), 1-30 (2011). 
  30. J.  B.  Scarborough, Numerical Mathematical analysis, Johns Hopkins Press (1966). 
  31. H.  Naik, A.V.R.  Reddy & V.K.  Mauchanda,  Yields  of  fission  products  in neutron  induced  fission  on  heavier  actinides.  BARC Report. BARC/2008/E/004.

*Contents are provided by Authors of articles. Please contact us if you having any query.






Bank Details